

Recent Tevatron Efforts

Ron Moore

Fermilab – Tevatron Dept.

- Orbit Stabilization
- Move Proton Tunes > 7/12 Resonance
- Fix CDF IP Waist
- Reduce D0 Losses at End of Squeeze

In-Store Orbit Stabilization: It's Operational!

Move Proton Tunes > 7/12 Resonance

- Previously: 4/7 (0.571) < proton tunes < 7/12 (0.583)
- Mixed source pbars ⇒ large differences in brightness = N / ε
 - Head-on beam-beam tune shift varies with brightness
 - Some proton bunches tune-shifted up onto 7/12 resonance
 - Lower lifetime, higher losses for those bunches
 - Helps with store-to-store differences
- Move protons above 7/12 resonance to get more tune space
 - But keep pbar tunes fixed and keep ability to make changes
 - Not enough current in S4 feeddown circuits (our usual knob)
 - TEL abort gap cleaning would become less efficient
- S3 circuit + tune, coupling adjustments (Yu. Alexahin, A. Valishev)
 - Modelling, several beam studies

TEL Abort Gap Cleaning with Higher Proton Tunes

Move Proton Tunes > 7/12 Resonance

- TEL exploits nearby tune resonances for abort gap cleaning
 - Pulsing every 7 turns good for previous proton tunes near 4/7
- Need new scheme for proton tunes > 7/12 (X. Zhang)
 - After studies and operational experience, now pulsing every 6 turns

- Higher proton tunes only in HEP now
 - Eventually propagate to injection, ramp, squeeze
 - Involves considerable study time...not on-the-fly between stores

Move CDF IP Waist

- Waist = longitudinal position of minimum β
 - Can be different for horz, vert β functions
- ≈5 cm offset @ CDF was a remnant of changing to 28 cm β*
- Fix requires swapping loads of Q2 & Q3 low-β trims (A. Valishev)
 - Put trim current into upstream quad rather than downstream
 - Partial corrections by zeroing the current in those trims
 - Complicated since trims are used during ramp and/or squeeze
 - Make corrections in steps
- Q2 trim cable swapped, squeeze corrected, current > 0 for HEP
- Q3 trim now running at ≈zero for HEP
- Bulk of the correction is done (store 4473)...hopefully that's sufficient

Reduce D0 Losses @ End of Squeeze

- For several months, D0 hit with losses near end of the squeeze
 - -30 100 rad/min
 - Occasionally damaged power supplies
- Source unclear...tried tuning, chromaticity reductions, verified orbits not hitting apertures
- Switching to 28 cm β* seemed to help, but problems got worse

D0 Losses @ End of Squeeze: Store 4464

Reduce D0 Losses @ End of Squeeze

- Decrease amount of time between low β and initiating collisions
 - Attempt to reduce integrated dose during time of high losses
 - Automatically start collisions after reaching low β
 - Change to Tev sequencer → eliminate human intervention for that step
- Fix orbit mismatch between low β and collisions
 - Ideally, only differences should be near IPs
 - → Separator ramps to remove beam offsets (horz @ CDF, vert @ D0)
 - However, significant differences in arcs and smaller than desired separation between protons and pbars
 - Correct separator settings at low β
- Both changes implemented for store 4473...much better!
 - Should also fix separators at step 24 (just before low β)

D0 Losses @ End of Squeeze: Store 4473

